\(\int \frac {(a+b x)^{5/2} \sqrt {c+d x}}{x^2} \, dx\) [651]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 22, antiderivative size = 197 \[ \int \frac {(a+b x)^{5/2} \sqrt {c+d x}}{x^2} \, dx=\frac {b (b c+11 a d) \sqrt {a+b x} \sqrt {c+d x}}{4 d}+\frac {3}{2} b (a+b x)^{3/2} \sqrt {c+d x}-\frac {(a+b x)^{5/2} \sqrt {c+d x}}{x}-\frac {a^{3/2} (5 b c+a d) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{\sqrt {c}}-\frac {\sqrt {b} \left (b^2 c^2-10 a b c d-15 a^2 d^2\right ) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{4 d^{3/2}} \]

[Out]

-1/4*(-15*a^2*d^2-10*a*b*c*d+b^2*c^2)*arctanh(d^(1/2)*(b*x+a)^(1/2)/b^(1/2)/(d*x+c)^(1/2))*b^(1/2)/d^(3/2)-a^(
3/2)*(a*d+5*b*c)*arctanh(c^(1/2)*(b*x+a)^(1/2)/a^(1/2)/(d*x+c)^(1/2))/c^(1/2)+3/2*b*(b*x+a)^(3/2)*(d*x+c)^(1/2
)-(b*x+a)^(5/2)*(d*x+c)^(1/2)/x+1/4*b*(11*a*d+b*c)*(b*x+a)^(1/2)*(d*x+c)^(1/2)/d

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {99, 159, 163, 65, 223, 212, 95, 214} \[ \int \frac {(a+b x)^{5/2} \sqrt {c+d x}}{x^2} \, dx=-\frac {a^{3/2} (a d+5 b c) \text {arctanh}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{\sqrt {c}}-\frac {\sqrt {b} \left (-15 a^2 d^2-10 a b c d+b^2 c^2\right ) \text {arctanh}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{4 d^{3/2}}-\frac {(a+b x)^{5/2} \sqrt {c+d x}}{x}+\frac {3}{2} b (a+b x)^{3/2} \sqrt {c+d x}+\frac {b \sqrt {a+b x} \sqrt {c+d x} (11 a d+b c)}{4 d} \]

[In]

Int[((a + b*x)^(5/2)*Sqrt[c + d*x])/x^2,x]

[Out]

(b*(b*c + 11*a*d)*Sqrt[a + b*x]*Sqrt[c + d*x])/(4*d) + (3*b*(a + b*x)^(3/2)*Sqrt[c + d*x])/2 - ((a + b*x)^(5/2
)*Sqrt[c + d*x])/x - (a^(3/2)*(5*b*c + a*d)*ArcTanh[(Sqrt[c]*Sqrt[a + b*x])/(Sqrt[a]*Sqrt[c + d*x])])/Sqrt[c]
- (Sqrt[b]*(b^2*c^2 - 10*a*b*c*d - 15*a^2*d^2)*ArcTanh[(Sqrt[d]*Sqrt[a + b*x])/(Sqrt[b]*Sqrt[c + d*x])])/(4*d^
(3/2))

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a + b*
x)^(m + 1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))), x] - Dist[1/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n
- 1)*(e + f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m
, -1] && GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])

Rule 159

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_Symb
ol] :> Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Dist[1/(d*f*(m + n
 + p + 2)), Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(
n + 1) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2
*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {(a+b x)^{5/2} \sqrt {c+d x}}{x}+\int \frac {(a+b x)^{3/2} \left (\frac {1}{2} (5 b c+a d)+3 b d x\right )}{x \sqrt {c+d x}} \, dx \\ & = \frac {3}{2} b (a+b x)^{3/2} \sqrt {c+d x}-\frac {(a+b x)^{5/2} \sqrt {c+d x}}{x}+\frac {\int \frac {\sqrt {a+b x} \left (a d (5 b c+a d)+\frac {1}{2} b d (b c+11 a d) x\right )}{x \sqrt {c+d x}} \, dx}{2 d} \\ & = \frac {b (b c+11 a d) \sqrt {a+b x} \sqrt {c+d x}}{4 d}+\frac {3}{2} b (a+b x)^{3/2} \sqrt {c+d x}-\frac {(a+b x)^{5/2} \sqrt {c+d x}}{x}+\frac {\int \frac {a^2 d^2 (5 b c+a d)-\frac {1}{4} b d \left (b^2 c^2-10 a b c d-15 a^2 d^2\right ) x}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx}{2 d^2} \\ & = \frac {b (b c+11 a d) \sqrt {a+b x} \sqrt {c+d x}}{4 d}+\frac {3}{2} b (a+b x)^{3/2} \sqrt {c+d x}-\frac {(a+b x)^{5/2} \sqrt {c+d x}}{x}+\frac {1}{2} \left (a^2 (5 b c+a d)\right ) \int \frac {1}{x \sqrt {a+b x} \sqrt {c+d x}} \, dx-\frac {\left (b \left (b^2 c^2-10 a b c d-15 a^2 d^2\right )\right ) \int \frac {1}{\sqrt {a+b x} \sqrt {c+d x}} \, dx}{8 d} \\ & = \frac {b (b c+11 a d) \sqrt {a+b x} \sqrt {c+d x}}{4 d}+\frac {3}{2} b (a+b x)^{3/2} \sqrt {c+d x}-\frac {(a+b x)^{5/2} \sqrt {c+d x}}{x}+\left (a^2 (5 b c+a d)\right ) \text {Subst}\left (\int \frac {1}{-a+c x^2} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )-\frac {\left (b^2 c^2-10 a b c d-15 a^2 d^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c-\frac {a d}{b}+\frac {d x^2}{b}}} \, dx,x,\sqrt {a+b x}\right )}{4 d} \\ & = \frac {b (b c+11 a d) \sqrt {a+b x} \sqrt {c+d x}}{4 d}+\frac {3}{2} b (a+b x)^{3/2} \sqrt {c+d x}-\frac {(a+b x)^{5/2} \sqrt {c+d x}}{x}-\frac {a^{3/2} (5 b c+a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{\sqrt {c}}-\frac {\left (b^2 c^2-10 a b c d-15 a^2 d^2\right ) \text {Subst}\left (\int \frac {1}{1-\frac {d x^2}{b}} \, dx,x,\frac {\sqrt {a+b x}}{\sqrt {c+d x}}\right )}{4 d} \\ & = \frac {b (b c+11 a d) \sqrt {a+b x} \sqrt {c+d x}}{4 d}+\frac {3}{2} b (a+b x)^{3/2} \sqrt {c+d x}-\frac {(a+b x)^{5/2} \sqrt {c+d x}}{x}-\frac {a^{3/2} (5 b c+a d) \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {a+b x}}{\sqrt {a} \sqrt {c+d x}}\right )}{\sqrt {c}}-\frac {\sqrt {b} \left (b^2 c^2-10 a b c d-15 a^2 d^2\right ) \tanh ^{-1}\left (\frac {\sqrt {d} \sqrt {a+b x}}{\sqrt {b} \sqrt {c+d x}}\right )}{4 d^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.62 (sec) , antiderivative size = 168, normalized size of antiderivative = 0.85 \[ \int \frac {(a+b x)^{5/2} \sqrt {c+d x}}{x^2} \, dx=\frac {1}{4} \left (\frac {\sqrt {a+b x} \sqrt {c+d x} \left (-4 a^2 d+9 a b d x+b^2 x (c+2 d x)\right )}{d x}-\frac {4 a^{3/2} (5 b c+a d) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {c+d x}}{\sqrt {c} \sqrt {a+b x}}\right )}{\sqrt {c}}-\frac {\sqrt {b} \left (b^2 c^2-10 a b c d-15 a^2 d^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {d} \sqrt {a+b x}}\right )}{d^{3/2}}\right ) \]

[In]

Integrate[((a + b*x)^(5/2)*Sqrt[c + d*x])/x^2,x]

[Out]

((Sqrt[a + b*x]*Sqrt[c + d*x]*(-4*a^2*d + 9*a*b*d*x + b^2*x*(c + 2*d*x)))/(d*x) - (4*a^(3/2)*(5*b*c + a*d)*Arc
Tanh[(Sqrt[a]*Sqrt[c + d*x])/(Sqrt[c]*Sqrt[a + b*x])])/Sqrt[c] - (Sqrt[b]*(b^2*c^2 - 10*a*b*c*d - 15*a^2*d^2)*
ArcTanh[(Sqrt[b]*Sqrt[c + d*x])/(Sqrt[d]*Sqrt[a + b*x])])/d^(3/2))/4

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(433\) vs. \(2(155)=310\).

Time = 0.56 (sec) , antiderivative size = 434, normalized size of antiderivative = 2.20

method result size
default \(\frac {\sqrt {b x +a}\, \sqrt {d x +c}\, \left (15 \ln \left (\frac {2 b d x +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) a^{2} b \,d^{2} x \sqrt {a c}+10 \ln \left (\frac {2 b d x +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) a \,b^{2} c d x \sqrt {a c}-\ln \left (\frac {2 b d x +2 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}+a d +b c}{2 \sqrt {b d}}\right ) b^{3} c^{2} x \sqrt {a c}-4 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{3} d^{2} x \sqrt {b d}-20 \ln \left (\frac {a d x +b c x +2 \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 a c}{x}\right ) a^{2} b c d x \sqrt {b d}+4 b^{2} d \,x^{2} \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+18 a b d x \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}+2 b^{2} c x \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}-8 a^{2} d \sqrt {b d}\, \sqrt {a c}\, \sqrt {\left (b x +a \right ) \left (d x +c \right )}\right )}{8 \sqrt {\left (b x +a \right ) \left (d x +c \right )}\, \sqrt {b d}\, \sqrt {a c}\, d x}\) \(434\)

[In]

int((b*x+a)^(5/2)*(d*x+c)^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

1/8*(b*x+a)^(1/2)*(d*x+c)^(1/2)*(15*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2)
)*a^2*b*d^2*x*(a*c)^(1/2)+10*ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*a*b^2
*c*d*x*(a*c)^(1/2)-ln(1/2*(2*b*d*x+2*((b*x+a)*(d*x+c))^(1/2)*(b*d)^(1/2)+a*d+b*c)/(b*d)^(1/2))*b^3*c^2*x*(a*c)
^(1/2)-4*ln((a*d*x+b*c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^3*d^2*x*(b*d)^(1/2)-20*ln((a*d*x+b*
c*x+2*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*a*c)/x)*a^2*b*c*d*x*(b*d)^(1/2)+4*b^2*d*x^2*(b*d)^(1/2)*(a*c)^(1/2
)*((b*x+a)*(d*x+c))^(1/2)+18*a*b*d*x*(b*d)^(1/2)*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)+2*b^2*c*x*(b*d)^(1/2)*(a*
c)^(1/2)*((b*x+a)*(d*x+c))^(1/2)-8*a^2*d*(b*d)^(1/2)*(a*c)^(1/2)*((b*x+a)*(d*x+c))^(1/2))/((b*x+a)*(d*x+c))^(1
/2)/(b*d)^(1/2)/(a*c)^(1/2)/d/x

Fricas [A] (verification not implemented)

none

Time = 1.44 (sec) , antiderivative size = 1074, normalized size of antiderivative = 5.45 \[ \int \frac {(a+b x)^{5/2} \sqrt {c+d x}}{x^2} \, dx=\text {Too large to display} \]

[In]

integrate((b*x+a)^(5/2)*(d*x+c)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[-1/16*((b^2*c^2 - 10*a*b*c*d - 15*a^2*d^2)*x*sqrt(b/d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*
(2*b*d^2*x + b*c*d + a*d^2)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(b/d) + 8*(b^2*c*d + a*b*d^2)*x) - 4*(5*a*b*c*d +
a^2*d^2)*x*sqrt(a/c)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c^2 + (b*c^2 + a*c*d)*x)*sq
rt(b*x + a)*sqrt(d*x + c)*sqrt(a/c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) - 4*(2*b^2*d*x^2 - 4*a^2*d + (b^2*c + 9*a*
b*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(d*x), 1/8*((b^2*c^2 - 10*a*b*c*d - 15*a^2*d^2)*x*sqrt(-b/d)*arctan(1/2*(
2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-b/d)/(b^2*d*x^2 + a*b*c + (b^2*c + a*b*d)*x)) + 2*(5*a*
b*c*d + a^2*d^2)*x*sqrt(a/c)*log((8*a^2*c^2 + (b^2*c^2 + 6*a*b*c*d + a^2*d^2)*x^2 - 4*(2*a*c^2 + (b*c^2 + a*c*
d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(a/c) + 8*(a*b*c^2 + a^2*c*d)*x)/x^2) + 2*(2*b^2*d*x^2 - 4*a^2*d + (b^2*
c + 9*a*b*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(d*x), 1/16*(8*(5*a*b*c*d + a^2*d^2)*x*sqrt(-a/c)*arctan(1/2*(2*a
*c + (b*c + a*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-a/c)/(a*b*d*x^2 + a^2*c + (a*b*c + a^2*d)*x)) - (b^2*c^2
 - 10*a*b*c*d - 15*a^2*d^2)*x*sqrt(b/d)*log(8*b^2*d^2*x^2 + b^2*c^2 + 6*a*b*c*d + a^2*d^2 + 4*(2*b*d^2*x + b*c
*d + a*d^2)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(b/d) + 8*(b^2*c*d + a*b*d^2)*x) + 4*(2*b^2*d*x^2 - 4*a^2*d + (b^2
*c + 9*a*b*d)*x)*sqrt(b*x + a)*sqrt(d*x + c))/(d*x), 1/8*(4*(5*a*b*c*d + a^2*d^2)*x*sqrt(-a/c)*arctan(1/2*(2*a
*c + (b*c + a*d)*x)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-a/c)/(a*b*d*x^2 + a^2*c + (a*b*c + a^2*d)*x)) + (b^2*c^2
 - 10*a*b*c*d - 15*a^2*d^2)*x*sqrt(-b/d)*arctan(1/2*(2*b*d*x + b*c + a*d)*sqrt(b*x + a)*sqrt(d*x + c)*sqrt(-b/
d)/(b^2*d*x^2 + a*b*c + (b^2*c + a*b*d)*x)) + 2*(2*b^2*d*x^2 - 4*a^2*d + (b^2*c + 9*a*b*d)*x)*sqrt(b*x + a)*sq
rt(d*x + c))/(d*x)]

Sympy [F]

\[ \int \frac {(a+b x)^{5/2} \sqrt {c+d x}}{x^2} \, dx=\int \frac {\left (a + b x\right )^{\frac {5}{2}} \sqrt {c + d x}}{x^{2}}\, dx \]

[In]

integrate((b*x+a)**(5/2)*(d*x+c)**(1/2)/x**2,x)

[Out]

Integral((a + b*x)**(5/2)*sqrt(c + d*x)/x**2, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {(a+b x)^{5/2} \sqrt {c+d x}}{x^2} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((b*x+a)^(5/2)*(d*x+c)^(1/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 578 vs. \(2 (155) = 310\).

Time = 0.50 (sec) , antiderivative size = 578, normalized size of antiderivative = 2.93 \[ \int \frac {(a+b x)^{5/2} \sqrt {c+d x}}{x^2} \, dx=\frac {2 \, \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d} \sqrt {b x + a} {\left (2 \, {\left (b x + a\right )} {\left | b \right |} + \frac {b c d {\left | b \right |} + 7 \, a d^{2} {\left | b \right |}}{d^{2}}\right )} - \frac {8 \, {\left (5 \, \sqrt {b d} a^{2} b^{2} c {\left | b \right |} + \sqrt {b d} a^{3} b d {\left | b \right |}\right )} \arctan \left (-\frac {b^{2} c + a b d - {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}}{2 \, \sqrt {-a b c d} b}\right )}{\sqrt {-a b c d} b} - \frac {16 \, {\left (\sqrt {b d} a^{2} b^{4} c^{2} {\left | b \right |} - 2 \, \sqrt {b d} a^{3} b^{3} c d {\left | b \right |} + \sqrt {b d} a^{4} b^{2} d^{2} {\left | b \right |} - \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a^{2} b^{2} c {\left | b \right |} - \sqrt {b d} {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a^{3} b d {\left | b \right |}\right )}}{b^{4} c^{2} - 2 \, a b^{3} c d + a^{2} b^{2} d^{2} - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} b^{2} c - 2 \, {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2} a b d + {\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{4}} + \frac {{\left (\sqrt {b d} b^{2} c^{2} {\left | b \right |} - 10 \, \sqrt {b d} a b c d {\left | b \right |} - 15 \, \sqrt {b d} a^{2} d^{2} {\left | b \right |}\right )} \log \left ({\left (\sqrt {b d} \sqrt {b x + a} - \sqrt {b^{2} c + {\left (b x + a\right )} b d - a b d}\right )}^{2}\right )}{d^{2}}}{8 \, b} \]

[In]

integrate((b*x+a)^(5/2)*(d*x+c)^(1/2)/x^2,x, algorithm="giac")

[Out]

1/8*(2*sqrt(b^2*c + (b*x + a)*b*d - a*b*d)*sqrt(b*x + a)*(2*(b*x + a)*abs(b) + (b*c*d*abs(b) + 7*a*d^2*abs(b))
/d^2) - 8*(5*sqrt(b*d)*a^2*b^2*c*abs(b) + sqrt(b*d)*a^3*b*d*abs(b))*arctan(-1/2*(b^2*c + a*b*d - (sqrt(b*d)*sq
rt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2)/(sqrt(-a*b*c*d)*b))/(sqrt(-a*b*c*d)*b) - 16*(sqrt(b*d)*a
^2*b^4*c^2*abs(b) - 2*sqrt(b*d)*a^3*b^3*c*d*abs(b) + sqrt(b*d)*a^4*b^2*d^2*abs(b) - sqrt(b*d)*(sqrt(b*d)*sqrt(
b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^2*b^2*c*abs(b) - sqrt(b*d)*(sqrt(b*d)*sqrt(b*x + a) - sqrt
(b^2*c + (b*x + a)*b*d - a*b*d))^2*a^3*b*d*abs(b))/(b^4*c^2 - 2*a*b^3*c*d + a^2*b^2*d^2 - 2*(sqrt(b*d)*sqrt(b*
x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^2*b^2*c - 2*(sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*
d - a*b*d))^2*a*b*d + (sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c + (b*x + a)*b*d - a*b*d))^4) + (sqrt(b*d)*b^2*c^2*
abs(b) - 10*sqrt(b*d)*a*b*c*d*abs(b) - 15*sqrt(b*d)*a^2*d^2*abs(b))*log((sqrt(b*d)*sqrt(b*x + a) - sqrt(b^2*c
+ (b*x + a)*b*d - a*b*d))^2)/d^2)/b

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b x)^{5/2} \sqrt {c+d x}}{x^2} \, dx=\int \frac {{\left (a+b\,x\right )}^{5/2}\,\sqrt {c+d\,x}}{x^2} \,d x \]

[In]

int(((a + b*x)^(5/2)*(c + d*x)^(1/2))/x^2,x)

[Out]

int(((a + b*x)^(5/2)*(c + d*x)^(1/2))/x^2, x)